Sensitizing thermochemotherapy with a PARP1-inhibitor
نویسندگان
چکیده
Cis-diamminedichloroplatinum(II) (cisplatin, cDDP) is an effective chemotherapeutic agent that induces DNA double strand breaks (DSBs), primarily in replicating cells. Generally, such DSBs can be repaired by the classical or backup non-homologous end joining (c-NHEJ/b-NHEJ) or homologous recombination (HR). Therefore, inhibiting these pathways in cancer cells should enhance the efficiency of cDDP treatments. Indeed, inhibition of HR by hyperthermia (HT) sensitizes cancer cells to cDDP and in the Netherlands this combination is a standard treatment option for recurrent cervical cancer after previous radiotherapy. Additionally, cDDP has been demonstrated to disrupt c-NHEJ, which likely further increases the treatment efficacy. However, if one of these pathways is blocked, DSB repair functions can be sustained by the Poly-(ADP-ribose)-polymerase1 (PARP1)-dependent b-NHEJ. Therefore, disabling b-NHEJ should, in principle, further inhibit the repair of cDDP-induced DNA lesions and enhance the toxicity of thermochemotherapy. To explore this hypothesis, we treated a panel of cancer cell lines with HT, cDDP and a PARP1-i and measured various end-point relevant in cancer treatment. Our results demonstrate that PARP1-i does not considerably increase the efficacy of HT combined with standard, commonly used cDDP concentrations. However, in the presence of a PARP1-i, ten-fold lower concentration of cDDP can be used to induce similar cytotoxic effects. PARP1 inhibition may thus permit a substantial lowering of cDDP concentrations without diminishing treatment efficacy, potentially reducing systemic side effects.
منابع مشابه
Enhancing synthetic lethality of PARP-inhibitor and cisplatin in BRCA-proficient tumour cells with hyperthermia
BACKGROUND Poly-(ADP-ribose)-polymerase1 (PARP1) is involved in repair of DNA single strand breaks. PARP1-inhibitors (PARP1-i) cause an accumulation of DNA double strand breaks, which are generally repaired by homologous recombination (HR). Therefore, cancer cells harboring HR deficiencies are exceptionally sensitive to PARP1-i. For patients with HR-proficient tumors, HR can be temporarily inhi...
متن کاملRadiosensitization with an inhibitor of poly(ADP-ribose) glycohydrolase: A comparison with the PARP1/2/3 inhibitor olaparib
Upon DNA binding the poly(ADP-ribose) polymerase family of enzymes (PARPs) add multiple ADP-ribose subunits to themselves and other acceptor proteins. Inhibitors of PARPs have become an exciting and real prospect for monotherapy and as sensitizers to ionising radiation (IR). The action of PARPs are reversed by poly(ADP-ribose) glycohydrolase (PARG). Until recently studies of PARG have been limi...
متن کاملInvolvement of ROS in the inhibitory effect of thermotherapy combined with chemotherapy on A549 human lung adenocarcinoma cell growth through the Akt pathway.
Mechanisms of synergistic effect of thermotherapy and chemotherapy on human lung adenocarcinoma cell growth are unclear. The purpose of this study was to investigate these effects and explore the function of ROS, Akt and caspase-3 in relation to these. A549 cells were subjected to different thermochemotherapy treatments: 43˚C heat+50 µg/l paclitaxel (thermochemotherapy group), 43˚C heat+50 µg/l...
متن کاملDifferences in Expression of Key DNA Damage Repair Genes after Epigenetic-Induced BRCAness Dictate Synthetic Lethality with PARP1 Inhibition.
The triple-negative breast cancer (TNBC) subtype represents a cancer that is highly aggressive with poor patient outcome. Current preclinical success has been gained through synthetic lethality, targeting genome instability with PARP inhibition in breast cancer cells that harbor silencing of the homologous recombination (HR) pathway. Histone deacetylase inhibitors (HDACi) are a class of drugs t...
متن کاملPARP1 Inhibitors: antitumor drug design
The poly (ADP-ribose) polymerase 1 (PARP1) enzyme is one of the promising molecular targets for the discovery of antitumor drugs. PARP1 is a common nuclear protein (1-2 million molecules per cell) serving as a "sensor" for DNA strand breaks. Increased PARP1 expression is sometimes observed in melanomas, breast cancer, lung cancer, and other neoplastic diseases. The PARP1 expression level is a p...
متن کامل